Pemodelan Aermod Sebaran NO2 Pengangkutan Batubara Di Batu Sopang Kalimantan Timur

Authors

  • Rafiuddin Program Studi Teknik Pertambangan Fakultas Teknik Universitas Pejuang Republik Indonesia
  • Irfan Said Program Studi Teknik Informatika Fakultas Teknik Universitas Pejuang Republik Indonesia Makassar

DOI:

https://doi.org/10.55334/jtam.v4i2.177

Keywords:

AERMOD, Nitrogen Dioksida, Udara Ambien, Emisi

Abstract

Penelitian ini menyimulasikan sebaran gas  dampak kegiatan pengangkutan batubara di Batu Sopang, Kalimantan Timur. Simulasi sebaran  dilakukan menggunakan pemodelan AERMOD. Sumber emisi  berasal dari sisa pembakaran dump truk pengangkut batubara yang melalui jalan hauling sepanjang 21,14 km. Laju emisi  dari kegiatan pengangkutan batubara sebesar 3,74 g/s. Hasil simulasi numerik dibagi kedalam 3 periode kuadrimester sepanjang tahun 2022. Hasil numerik akan divalidasi dengan data hasil pemantauan pada 10 titik disekita lokasi penelitian untuk mengetahui tingkat akurasi model yang digunakan. Nilai RMSPE model numerik pada periode kuadrimester kedua tahun 2022 sebesar 46,84%. Tingkat akurasi pada periode kuadrimester kedua sedikit lebih baik dibandingkan dengan periode kuadrimester pertama dan ketiga yang masing-masing memiliki nilai RMSPE sebesar 54,81% dan 60,96%.

References

Achakulwisut, P., Brauer, M., Hystad, P., & Anenberg, S. C. (2019). Global, national, and urban burdens of paediatric asthma incidence attributable to ambient NO2 pollution: estimates from global datasets. The Lancet Planetary Health, 3(4), e166–e178. https://doi.org/10.1016/S2542-5196(19)30046-4

Askariyeh, M. H., Kota, S. H., Vallamsundar, S., Zietsman, J., & Ying, Q. (2017). AERMOD for near-road pollutant dispersion: Evaluation of model performance with different emission source representations and low wind options. Transportation Research Part D: Transport and Environment, 57, 392–402. https://doi.org/10.1016/j.trd.2017.10.008

BPS Kab. Paser. (2023). Kecamatan Batu Sopang Dalam Angka 2023. Badan Pusat Statistik Kabupaten Paser.

Carslaw, D. C., Farren, N. J., Vaughan, A. R., Drysdale, W. S., Young, S., & Lee, J. D. (2019). The diminishing importance of nitrogen dioxide emissions from road vehicle exhaust. Atmospheric Environment: X, 1, 100002. https://doi.org/10.1016/j.aeaoa.2018.100002

Chen, T.-M., Kuschner, W. G., Gokhale, J., & Shofer, S. (2007). Outdoor Air Pollution: Nitrogen Dioxide, Sulfur Dioxide, and Carbon Monoxide Health Effects. The American Journal of the Medical Sciences, 333(4), 249–256. https://doi.org/10.1097/MAJ.0b013e31803b900f

Cimorelli, A. J., Perry, S. G., Venkatram, A., Weil, J. C., Paine, R. J., Wilson, R. B., & Paumier. (2004). AERMOD: description of model formulation.

Gibson, M. D., Kundu, S., & Satish, M. (2013). Dispersion model evaluation of PM2.5, NOx and SO2 from point and major line sources in Nova Scotia, Canada using AERMOD Gaussian plume air dispersion model. Atmospheric Pollution Research, 4(2), 157–167. https://doi.org/10.5094/APR.2013.016

Hall, D. L., Anderson, D. C., Martin, C. R., Ren, X., Salawitch, R. J., He, H., Canty, T. P., Hains, J. C., & Dickerson, R. R. (2020). Using near-road observations of CO, NOy, and CO2 to investigate emissions from vehicles: Evidence for an impact of ambient temperature and specific humidity. Atmospheric Environment, 232, 117558. https://doi.org/10.1016/j.atmosenv.2020.117558

Heinrich, J., Thiering, E., Rzehak, P., Krämer, U., Hochadel, M., Rauchfuss, K. M., Gehring, U., & Wichmann, H.-E. (2013). Long-term exposure to NO 2 and PM 10 and all-cause and cause-specific mortality in a prospective cohort of women. Occupational and Environmental Medicine, 70(3), 179–186. https://doi.org/10.1136/oemed-2012-100876

Hvidtfeldt, U. A., Sørensen, M., Geels, C., Ketzel, M., Khan, J., Tjønneland, A., Overvad, K., Brandt, J., & Raaschou-Nielsen, O. (2019). Long-term residential exposure to PM2.5, PM10, black carbon, NO2, and ozone and mortality in a Danish cohort. Environment International, 123, 265–272. https://doi.org/10.1016/j.envint.2018.12.010

Irankunda, E., Török, Z., Mereuță, A., Gasore, J., Kalisa, E., Akimpaye, B., Habineza, T., Shyaka, O., Munyampundu, G., & Ozunu, A. (2022). The comparison between in-situ monitored data and modelled results of nitrogen dioxide (NO2): case-study, road networks of Kigali city, Rwanda. Heliyon, 8(12), e12390. https://doi.org/10.1016/j.heliyon.2022.e12390

Jin, X., Fiore, A., Boersma, K. F., Smedt, I. De, & Valin, L. (2020). Inferring Changes in Summertime Surface Ozone–NO x –VOC Chemistry over U.S. Urban Areas from Two Decades of Satellite and Ground-Based Observations. Environmental Science & Technology, 54(11), 6518–6529. https://doi.org/10.1021/acs.est.9b07785

Perry, S. G., Cimorelli, A. J., Paine, R. J., Brode, R. W., Weil, J. C., Venkatram, A., Wilson, R. B., Lee, R. F., & Peters, W. D. (2005). AERMOD: A Dispersion Model for Industrial Source Applications. Part II: Model Performance against 17 Field Study Databases. Journal of Applied Meteorology, 44(5), 694–708. https://doi.org/10.1175/JAM2228.1

Seangkiatiyuth, K., Surapipith, V., Tantrakarnapa, K., & Lothongkum, A. W. (2011). Application of the AERMOD modeling system for environmental impact assessment of NO2 emissions from a cement complex. Journal of Environmental Sciences, 23(6), 931–940. https://doi.org/10.1016/S1001-0742(10)60499-8

Tan, Z., Lu, K., Dong, H., Hu, M., Li, X., Liu, Y., Lu, S., Shao, M., Su, R., Wang, H., Wu, Y., Wahner, A., & Zhang, Y. (2018). Explicit diagnosis of the local ozone production rate and the ozone-NOx-VOC sensitivities. Science Bulletin, 63(16), 1067–1076. https://doi.org/10.1016/j.scib.2018.07.001

Downloads

Published

2023-12-27

How to Cite

Rafiuddin, & Said, I. (2023). Pemodelan Aermod Sebaran NO2 Pengangkutan Batubara Di Batu Sopang Kalimantan Timur. Jurnal Teknik AMATA, 4(2), 30–38. https://doi.org/10.55334/jtam.v4i2.177

Issue

Section

Articles